NEW IMAGING MODALITIES IN GLAUCOMA

Karim A. Raafat MD.
Professor of Ophthalmology
Cairo University

“Life is trying things to see if they work”
Ray Bradbury
Structure

Function

SAP

FDT

SWAP
Retinal Ganglion Cells

- Key cell type in glaucoma damage.
- 20–40% loss before field defects.
- 10 years delay in diagnosis.

Apoptosis

- Normal aging: 0.4% / Y.
- Glaucoma: 4% / Y.
- Exp glaucoma model: 2-4 weeks → 4-13% apoptosis.

Fluorescent-labeled Annexin V

cSLO 488 nm

DARC (Detection of Apoptosing Retinal Cells)
Non-invasive, \textit{in vivo}, real-time Visualization of Single Retinal Cells Undergoing Apoptosis

- Early Diagnosis, Monitor Progression and Treatment Efficacy.
- Effect of therapy \textit{in days and weeks} (rather than years).
- IOP: insufficient as diagnostic tool or index of control.
- Non-IOP lowering strategies: blockade glutamate activity (NMDA antagonist).
- No human data available so far.
Axonal Transport (BDNF)

- Elevated IOP
- Apoptosis

Axonal Transport (BDNF)

- Dynamic Imaging of Axonal Transport in Living Retinal Ganglion Cells In Vitro
- BDNF + GFP

- Control
- Glaucoma
Lamina Cribrosa

Principal site of RGC axon damage in glaucoma

Pre-laminar thinning

TLPG

PP sclera stretching

CT deformation & Re-modeling.

DD Glaucomatous vs. non-glaucomatous cupping
Localized Glaucomatous Damage & Focal Progression

- Peripheral LC.
- Inf. & Sup. Poles:
 - Larger pores.
 - Thinner CT.
 - Less glial tissue.
- Early: Precedes clinical findings.
- Damaged LC: More susceptible to further damage.

Adaptive Optics

- LC thinner in glaucoma patients.
- Post. Displacement, Compression.
- Dis-insertion.
- Pore deformation (Ax. Flow, Bl. Supply).

Pore Geometry
LC Micro-Architecture

- Increased beam thickness : pore diameter ratio.
- Increased variability of pore diameter.
- Increased pore count.
- Decreased pore diameter.

LC re-modeling : disease severity indicator.

Trans-laminar Pressure Gradient (TLPG)
[IOP - CSFp] & LC thickness

Optic Neuropathy Induced by Experimentally Reduced Cerebrospinal Fluid Pressure in Monkeys. *JOVS May 2014; 55 : 3067-3073.*
• No significant laminar changes when IOP and CSFp increase *equally*.

• CSFp changes *cause much greater effect* than equivalent changes in IOP.

• Cup volume changes due to IOP/CSFp changes *rather than neural tissue loss*.

Ocular pulsatility: significantly greater amplitude in glaucoma.

Retina & LC move in opposite directions —— deformation and stretching of GC axons.
Advanced Glaucoma: LC more susceptible to IOP changes. Cause or Result?!
Early: LC compression Late: LC atrophy

Para Papillary Atrophy

Visible sclera and large ch v.
Irregular hypo- / hyper pigmentation
SD-OCT Correlate of Para papillary region.

- Beta zone: glaucoma association.
- Gamma zone: NO glaucoma association more in moderate myopia (-8.0 D).
- Both increase with age, myopia, disc size.
OCT Angiography
Doppler Frequency Shift of Back scattered Light

Disc flow index, correlated with the severity of glaucoma & Functional tests (VF PSD).

Used to determine OH and Glaucoma suspects that require Treatment.

Disc perfusion is reduced in glaucomatous eyes.
Anterior Chamber Angle

Good reproducibility & gonioscopy – correlated in nasal and temporal quadrants.

Less distinct at S & I quadrants.

Length μ (AOD), **Area** sq μ (TISA), **Angle** ° (TIA).

Aqueous Outflow Structures

SD - OCT

Scleral Vein
Collector Channel
SC
Aqueous Outflow Structures

SC cross-sectional area:

- Significantly *Smaller* in Glaucoma Patients.
- Significantly *Larger* on the Nasal side.
- *Collapse* after Glaucoma Drainage Device.

Omega Zone
Absence of Glaucoma.

Axonal Transport

LC micro-architecture

OCT Angiography

DARC
In-vivo, Real-time, Non-invasive Imaging of Single Cells undergoing Apoptosis.

Gamma Zone
Absence of Glaucoma.
“By seeing more, we should be able to diagnose and then intervene at a much earlier stage”

Thank You