OCT in the Diagnosis and Follow-up of Glaucoma

Karim A Raafat MD.
Professor of Ophthalmology
Cairo University
Visual Function

- Structure: ~5000 axon/year.
- Function: ~1 dB/decade.

Point of Diagnosis & Treatment

Severe Visual Loss

100%

Age

Glaucoma Progression is *Individual* and *variable*
• Glaucoma suspect.

• Glaucoma workup. \rightarrow Damage at presentation

• Initiate therapy. \rightarrow Rate of progression.

• Follow-up. \rightarrow Progressive change of optic disc or visual field is the hallmark of glaucoma diagnosis.

• Modify/Change treatment.

“The decision to initiate anti-glaucoma therapy is a very serious one that has far-reaching consequences”.

George Spaeth

• Side effects
• Significant cost
• Altered QoL
Rationale for Quantitative Imaging in Glaucoma

- Visual field: subjective, 3 consecutive fields are required to reliably confirm glaucoma.
- **Structural loss precedes functional loss:**
 6 years in 60% of eyes.
- As much as 30-50% of RNFL may be lost before Standard Automated Perimetry (SAP) VF changes.
- Change in the cup represents loss of *thousands of axons*.
Glaucoma affects 3 areas in the posterior segment of the eye.

- Cupping
- Ganglion Cell Loss
- Nerve fiber thinning

Peri-papillary RNFL Thickness

ONH Analysis

Macular GCC Measurement
SD-OCT
“Does any RNFL loss mean Glaucoma?
Inferior Average:

- Least affected by age-decay.
- Significantly thinner in glaucoma than in normal.
- Highest sensitivity and specificity in early glaucoma diagnosis.
- Discriminates progressors from non-progressors.

Inferior Average:
the best to discriminate healthy from glaucomatous eyes

Sensitivity 84%
Specificity 90%

ISN’T Rule
• Established diagnosis -- uncontrolled disease -- therapy advancement.
• Glaucoma suspect – confirm diagnosis.
Structural Damage Precedes Functional Damage?!
Glaucoma Visual Field Loss, NO corresponding RNFL Defects.

- 1-clock hour is “too wide” for detection of localized loss.

- RNFL defects “not always” result in reduction of RNFL thickness.

- Reduction of RNFL thickness not exceed “normal variation”.

- Order of Glaucomatous Damage vary from patient to patient.
- Localized RNFL defects limited to deeper layers while most superficial layers being intact.
- Physiologic age-decay of the RNFL.
- Diffuse component of RNFL loss so large to mask localized defects.
Quantitative Imaging may detect glaucoma at an earlier stage.

RNFL thickness after IOP reduction

- IOP reduction (medical or surgical) ---- *significant increase* of mean RNFL thickness.
- Correlated to the IOP reduction
- **0.5 µ increase of mean NFL thickness/mmHg decrease of IOP**
- Least evident in inferior quadrant

Recovery of the compressed NFL, Retinal swelling, Restoration of normal axoplasmic flow to the RNFL, Changes in the axial length of the globe.

Clinical implication: obtain new OCT measurements as a baseline for follow up after glaucoma surgery.
OCT & Early Glaucoma
Moderate Sensitivity and High Specificity

Diagnostic Test

- Highly specific: if +ve ----- Rule IN the disease.
- Highly sensitive: if -ve ---- Rule OUT the disease.

OCT (esp inferior RNFL thickness)
rule IN early glaucoma when +ve
but can not rule OUT when -ve

Inferior Quadrant
RNFL Thickness

≤ 92.5 µ
100% Glaucoma

> 92.5 µ and ≤ 119 µ
56% Normal
44% Glaucoma

> 119 µ
88% Normal
12% Glaucoma
Advanced Glaucoma

OCT has little role!

Location of 2nd order blood vessels within RNFL

- Normal
- Focal RNFL loss
- Diffuse RNFL loss
Location of 2nd order blood vessels within RNFL

- Normal
- Mild RNFL loss
- Severe RNFL loss
ONH Parameters

5 "4 mm" lines for optic disc topography

- 3.4 mm circle
- 512 A-scan
- Interpolation: localized RNFL defects can be missed.

TD-OCT

SD-OCT

- 6 X 6 mm cube
- 512 X 128 B-scan
- Much higher number of measurements.

Can *not* be compared: different tech spcs, imaging protocols and thickness measurement algorithms.
ONH Parameters:

Poor sensitivity for glaucoma progression:

- Interpolation.
- Progressive para papillary atrophy in glaucoma.
TD-OCT susceptible to eye movements – scattering of sampling locations.

Manual placement: scan location affects results.

Higher acquisition speed (X100), Higher axial resolution (X2)
How to use speed and resolution to advantage?

Ganglion Cell Complex (GCC)

- **Axons**: NFL
- **Bodies**: ganglion cell layer
- **Dendrites**: Inner plexiform layer

Glaucoma primarily damages the ganglion cell complex (GCC)
Retinal thickness mapping is not sensitive for detecting glaucoma because glaucoma preferentially affects the inner retinal layers (GCC).

GCC Deviation Map

\[
\text{% Loss} = \frac{\text{actual} - \text{normal}}{\text{normal}}
\]

- **Blue**: 20-30% loss
- **Black**: > 50% loss

GCC Significance Map

- **Green**: within normal limits.
- **Yellow**: Borderline.
- **Red**: outside normal limits.
GCC Progression Analysis (visit every 6 months)

Generalized loss

Localized loss
Male, 58 years-old, IOP 27 mmHg (OD), 26 mmHg (OS) C/D 0.4 (OD), 0.3 (OS).

Ocular Hypertension

Pre-perimetric Glaucoma
Predict future visual field loss

9 months
Near-future: Doppler OCT measurement of Retinal Blood Flow

Double circular scan

Flow profile and direction determined on parallel sections*
Double circular scan transects all retinal branch vessels 6 times per second.

Algorithm for Total Retinal Blood Flow

- Doppler angle measurement
- Flow in a single vessel
- Total Retinal Blood Flow

Flow value: 40.8 to 52.9 μl/min, CV: 10.5%
Glaucoma reduces retinal blood flow

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Subjects</th>
<th>Total retinal blood flow (μl/min)</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>8</td>
<td>45.64</td>
<td>40.73-52.91</td>
<td></td>
</tr>
<tr>
<td>Perimetric Glaucoma</td>
<td>10</td>
<td>33.54</td>
<td>23.6-40.88</td>
<td></td>
</tr>
</tbody>
</table>

P < 0.003
Thank You